(R) - AND (S)-2-ACETOXY-1, 1, 2-TRIPHENYLETHANOL EFFECTIVE SYNTHETIC EQUIVALENTS OF A CHIRAL ACETATE ENOLATE

Manfred Braun^{*} and Ralf Devant Institut für Organische Chemie der Universität Richard-Willstätter-Allee 2, D-7500 Karlsruhe, BRD

Abstract: The enolate \mathfrak{z}_i easily available by double deprotonation of $\mathsf{R} \mathsf{P}^{-2-1}$ acetoxy-1,1,2-triphenylethanol (<u>5</u>), adds in a highly stereoselective manner to aldehydes. Hydrolysis of the adducts $\underline{6}/\underline{7}$ affords the acids $\underline{2}.$

Despite of the impressive progress made in stereoselective aldol reactions¹⁾, the problem of the addition of an (a-unsubstituted) acetate enolate 1 to aldehydes in order to give enantiomerically pure B-hydroxycarboxylic acids 2 could not be resolved, although many chiral auxiliary groups X^* were employed $^{2,3)}$. In this communication, we describe stereoselective aldol reactions, using the dianion 3 of (R) -2-acetoxy-1,1,2-triphenylethanol (5) as an easily available, effective synthetic equivalent of the chiral acetate enolate 1.

The (R)-diol 4, formed by addition of phenylmagnesium bromide to (R)-mandelic acid methyl ester⁴⁾, is converted (acetyl chloride, pyridine, CH_2Cl_2 ; 0^oC) into (R) -2-acetoxy-1,1,2-triphenylethanol (5) , $\begin{bmatrix} 4 \\ 5 \end{bmatrix}$ $\begin{bmatrix} 20 \\ n \end{bmatrix}$ = 209⁰ (c = 1.3, pyridine). Deprotonation to the enolate $\frac{3}{5}$ (M = Li) with lithium diisopropylamide and reaction with benzaldehyde at -78° C afforded a 85:15 mixture of the diastereomers 6a and 7a. It turned out, however, that the selectivity is distinctly improved by transmetallation of the lithium enolate 3 (M = Li) with magnesium bromide and by cooling to -115° C during the addition of the aldehydes RCHO. Since the ratio of the diastereomers 6 and 7 , obtained in this way, could not be determined by 1_H -NMR spectroscopy, the crude adducts $6/7$ were cleaved into the B-hydroxycarboxylic acids 2 and the diol 4 by heating in aqueous methanol with potassium hydroxide. The absolute configuration and the enantiomeric

excess (e.e.) of the acids 2 have been determined by a **comparison of the specific rotations and by 1** H-NMR spectroscopic investigation of the methyl esters in the presence of chiral shift reagents $^5\rangle$. From the result can be deduced the diastereoselectivity in the addition step; the ratio of the diastereomers $6 : 7$ is shown in table 1. Obviously, the enolate 3 $(M = MqBr)$ shows remarkably higher stereoselectivity in the reaction with aldehydes than the previously investigated acetate enolates 1^2). The chiral auxiliary agent, the diol 4, is regenerated by the hydrolysis mentioned above without racemization. Both enantiomers of 2-acetoxy-1,1,2-triphenylethanol (5) are readily available, since (R)- as well as (S)-mandelic acid are cheap commercial products. The carboxylic acids 2 are obtained in 76-85% total chemical yield, referred to 5.

Table 1: Adducts 6/7 and carboxylic acids 2

a) Change of sign of configuration, since n-propyl - other than the groups R in $\underline{2a}$, \underline{b} - has a lower order than CH₂COOH

Typical procedure for the addition of 5 to aldehydes: A solution of 15.Ommol lithium diisopropylamide in tetrahydrofuran (THF), prepared in the usual way from diisopropylamine and n-butyllithium, is added to a stirred suspension of 1.99 g (6.0 mmol) 5 in 20 ml THF at -78° C. The mixture is allowed to warm up to 0° C to give a clear solution.

In a 250 ml three-necked flask, fitted with a low temperature thermometer, a dry ice cooleà, pressure equalized dropping funnel with a septum, and a three way stopcock for admission of dry nitrogen, a mixture of 12.0 mmol magnesium bromide in 40 ml THF is prepared from 1,2-dibromoethane and magnesium turnings. Then 80ml dimethyl ether are condensed in the flask at -78⁰C.

The solution of the lithium enolate is added to this mixture via the dropping funnel at -78° C. After 1 h stirring the suspension is cooled to -115° C (ethanol/liquid nitrogen), treated with 1 ml benzaldehyde, and kept for 40

min at the same temperature. Addition of saturated NH_4C1 solution and warming up to room temperature, followed by extraction with chloroform give 2.55 g (97%) crude $6a/7a$ as a colorless solid. - 1 H-NMR (CDC1₃) 6 2.54 (2H, m, CH₂), 2.67 (2H, broad s, OH), 4.84 (1H, m, C₆H₅CHOH), 6.64 (1H, s, $C_fH_cCHOCOCH_2$, 6.8-7.6 (20H, m, aromatic H). See ref. 3 for the hydrolysis to 2 .

Acknowledgement: This work was supported by the Fonds der Chemischen Industrie and by the Deutsche Forschungsgemeinschaft (Br 604/7-1). Special thank goes to BASF Aktiengesellschaft for a generous gift of (R) - and (S) -mandelic acid.

References and Notes

- 1) D.A.Evans, J.V.Nelson, T.R.Taber, Top. Stereochem. 13, 1 (1982) and references cited therein.
- 2) The chiral auxiliary groups X^{\nless} , which operate very well as propionic acid derivatives, are almost completely unselective, when they are used in α -unsubstituted acetate enolates 1 (typical e.e. values: $0 - 258$); see ref. 1, especially p. 95f. - With enolates of α -sulfinyl esters (chiral α -substituent) the products 2 can be obtained in high enantiomeric excess - albeit with loss of the chiral auxiliary agent: C.Mioskowski, G.Solladié, Tetrahedron 36, 227 (1980).
- 3) Although an improvement (typical e.e. values: 60 70%) was possible with (R)-N-acetyl-d-phenylglycinol, the selectivity was felt to be unsatisfactory: M.Braun, R.Devant, Angew. Chem. 0, 802 **(1983); Angew.** Chem., Int. Ed. Engl. 22, 789 (1983).
- 4) A.McKenzie, H.Wren, J.Chem.Soc. 97, 473 (1910); R.Roger, W.B.McKay, J. Chem.Soc. 1931, 2229.
- 5) Eu(hfc)₃ and/or Eu(tfc)₃ (Aldrich/EGA/Janssen).

(Received in Germany 10 August 1984)